login
A179943
Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].
4
1, 1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 15, 21, 5, 1, 6, 24, 56, 55, 6, 1, 7, 35, 115, 209, 144, 7, 1, 8, 48, 204, 551, 780, 377, 8, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10, 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11
OFFSET
0,3
COMMENTS
Row sums = A179944: (1, 3, 7, 17, 47, 148, 518,...)
Row 1 = A001906, row 2 = A001353, row 3 = A004254, row 4 = A001109, row 5 = A004187, row 6 = A001090, row 7 = A018913, row 9 = A004189.
Let S_m(x) be the m-th Chebyshev S-polynomial, described by Wolfdieter Lang in his draft [Lang], defined by S_0(x)=1, S_1(x)=x and S_m(x)=x*S_{m-1}(x)-S_{m-2}(x) (m>1). Let A = (A(r,c)) denote the rectangular array (not the triangle). Then A(r,c) = S_c(r+2), r,c=0,1,2,.... - L. Edson Jeffery, Aug 14 2011
As to the array, (n+1)-th row is the INVERT transform of n-th row. - Gary W. Adamson, Jun 30 2013
If the array sequences are labeled (2,3,4,...) for the n-th sequence, convergence tends to (n + sqrt(n^2 - 4))/2. - Gary W. Adamson, Aug 20 2013
LINKS
Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
FORMULA
Antidiagonals of an array, (r,k), a(k) = (r+2)*a(k-1) - a*(k-2), r=0,1,2,... where (r,k) = term (2,1) in the 2 X 2 matrix [1,r; 1,r+1]^(k+1).
G.f. for row r of array: 1/(1 - (r+2)*x + x^2). - L. Edson Jeffery, Oct 26 2012
EXAMPLE
First few rows of the array =
.
1,...2,...3,....4,....5,....6,......7,...
1,...3,...8,...21,...55,..144,....377,...
1,...4,..15,...56,..209,..780,...2911,...
1,...5,..24,..115,..551,.2640,..12649,...
1,...6,..35,..204,.1189,.6930,..40391,...
.
Taking antidiagonals, we obtain triangle A179943:
.
1;
1, 2;
1, 3, 3;
1, 4, 8, 4;
1, 5, 15, 21, 5;
1, 6, 24, 56, 55, 6;
1, 7, 35, 115, 209, 144, 7;
1, 8, 48, 204, 551, 780, 377, 8;
1, 9, 63, 329, 1189, 2640, 2911, 987, 9;
1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10;
1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11;
1, 12, 120, 980, 6319, 30744, 105937, 235416, 290376, 151316, 17711, 12;
...
Examples: Row 1 of the array: (1, 3, 8, 21, 55, 144,...); 144 = term (1,5) of the array = term (2,1) of M^6; where M = the 2 X 2 matrix (1,1; 1,2] and M^6 = [89, 144; 144,233].
Term (1,5) of the array = 144 = (r+2)*(term (1,4)) - (term (1,3)) = 3*55 - 21.
MAPLE
invtr:= proc(b) local a;
a:= proc(n) option remember; local i;
`if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end
end:
A:= proc(n) A(n):= `if`(n=0, k->k+1, invtr(A(n-1))) end:
seq(seq(A(d-k)(k), k=0..d), d=0..10); # Alois P. Heinz, Jul 17 2013
# using observation by Gary W. Adamson
MATHEMATICA
a[_, 0] = 0; a[_, 1] = 1; a[r_, k_] := a[r, k] = (r+1)*a[r, k-1] - a[r, k-2]; Table[a[r-k+2, k], {r, 0, 10}, {k, 1, r+1}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 07 2010
STATUS
approved