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A049310 tabulates the coefficient array of the integer monic Chebyshev S-polynomials 
S(n,x):=U(n,x/2), with the usual Chebyshev U-polynomials of the second kind.
These polynomials appear in many applications, and  I will list 10 points. 
(Point (1)  was used in  the sequence of the day: 
http://oeis.org/wiki/Template:Sequence_of_the_Day_for_November_15)

(1) In linear atomic chains with N uniformly harmonic interacting atoms of the same mass. The 
eigenmodes have scaled frequency squares x given by the zeros of S(N,2(1-x)). 
The recurrence for the oscillations with frequency omega and displacement q_n  from the equilibrium 
position at site no. n, q_n(t)= q_n*exp(i omega t)  (i is the complex unit) , is:    

q_{n+1} - 2 (1-x) q_n + q_{ n-1} = 0. 

Here x:= omega^2/(2 (omega_0)^2), the normalized frequency squared, with omega_0:=k/m, where k 
is the uniform spring constant  and  m the atom's mass. This leads to the so called 2x2 transfer matrix
R(x):=[[2(1-x),-1],[1,0]], with [q_{n+1},q_{n}]^T = R(x) [q_{n},q_{n-1}]^T (T for transposed). 
Iteration yields  

[q_{n+1},q_{n}]^T = M_n(x) [q_{1},q_{0}]^T, 

with M_n(x)=R(x)^n, and  the two arbitrary inputs q_{1} and q_{0}. It follows that  

M_n(x) = [[S(n,2*(1-x)),S(n-1,2*(1-x))],[-S(n-1,2*(1-x)),-S(n-2,2(1-x))]]

due to the recurrence for the S- polynomials: 

S(n,x) = x *S(n-1,x) - S(n-2,x),  S(-1,x)=0,  S(0,x)=1, n>=1. 

Thus one obtains the general solution for the displacements 

q_{n+1} (x)= S(n,2(1-x))* q_1 - S(n-1,2(1-x))* q_0. 

For finite N-chains with fixed  boundary conditions q_0= 0 = q_{N+1} one therefore has to solve 
S(N,2(1-x))=0, and thus  obtains the N normalized eigenfrequency squares for the N-chain: 

x^{(N)}_{k} =  2 (sin(Pi*k/(2*(N+1)))^2, k=1,...,N. 

A side remark: because Det R(x)=1, also Det M_n(x) =1, identically, therefore on has the so called 
Cassini-Simson identity

(S(n-1,y))^2 - S(n,y)*S(n-2,y) = 1, for each n>=0.

  
(2) In graph theory S(N,x) is the characteristic polynomial of the P_N graph (n vertices, n-1 edges) 



with tridiagonal adjacency matrix [[0100...],[1010...],[01010..],...[...010]]. See the Michael Somos 
comment. For instance, the ordinary generating function for n(P_n,L), the total number of closed paths 
(walks) of length L on the graph P_N  denoted by W(P_N,x) :=  sum(n(P_N,L) x^L, L=0..infinity) 
turns out to be  y diff(S(N,y),y)/S(N,y) with y=1/x. Note that this has to produce vanishing n(P_n,L) for 
odd L .  This  can be rewritten as 

W(P_N,x) = ((N+1)*coth((N+1)*ln(2*x/(1-sqrt(1-(2*x)^2)))) - 1/sqrt(1-(2*x)^2))/sqrt(1-(2*x)^2). 

For example, if N=4, one obtains the sequence [4, 0, 6, 0, 14, 0, 36, 0, 94, 0,...] (2*A198634 without 
the zeros). This computation uses the moments (powers) of the zeros of the characteristic polynomial 
S(N,x) for the adjacency matrix of the  P_N graph. See the array A198632  and comments there. 
S(N,x) is also the matching polynomial for the P_N graph. See C. D. Godsil, Algebraic Combinatorics, 
p. 2,  Exercise 1, p. 14, and p. 144.

(3) In matrix theory one finds for the power of every 2x2 matrix with Det(M) = y, not 0, and trace(M) = 
x, due to the Cayley-Hamilton theorem M^2 - x M + y I = 0 (I is the 2x2 identity matrix), for the 
general power (note that  S(n,-2)= -1)

M^n =  (sqrt(y))^(n-1)*(S(n-1,x/sqrt(y))*M - sqrt(y)*S(n-2,x/sqrt(y))*I), n=0,1,....

This application lends  itself to a generalization to more variable Chebyshev  polynomials when one 
takes nxn matrices. 
As a corollary, consider the 2x2 matrix representation of a complex number z=x+y i by 
Z:=[[x,y],[-y,x]] with Det(Z) = x^2+y^2 =: rho^2  (not 0) and Trace(Z) = 2x  (see, e.g., R. Remmert, 
Komplexe Zahlen, in H.-D. Ebbinghaus et al., Zahlen,  1992, Springer, Kap. 3, p. 53). Then the usual 
de Moivre formula is replaced by

Z^n = rho^(n-1) *(S(n-1,2*cos(phi))*Z - rho*S(n-2,2*cos(phi))*I),

with cos(phi):=x/rho.

(4) The relation to Fibonacci numbers  F(n)=A000045(n) and Lucas numbers L(n)=A000032(n)  is, due 
to their recurrences with inputs (i is again the complex unit):
  
F(n) =  (-i)^(n-1)*S(n-1,i) and L(n) = 2*(-i)^n* T(n,i/2), 

with the so called trace polynomials (see the trace of the transfer matrix M_n(x) from part (1) divided 
by 2) 

T(n,x):=(S(n,x) - S(n-2,x))/2 

(they turn out to be the Chebyshev polynomials of the first kind, with coefficients given in  A053120).
One has, in particular, F(2(n+1)) = S(n,3), F(2n-1) = S(n-1,3)-S(n-2,3),  F(3n) = 2 (-1)^{n-1} S(n-1,4 i) 
and  L(3n)=2 (-1)^n T(n,2i).

(5) {S(n,x)}_0^infinity  is a monic orthogonal polynomial system (mOPS) in the variable x from the 
interval [-2,+2], with weight function w(x) = sqrt(1-(x/2)^2)  (for the U-polynomials, orthogonal on the 
interval [-1,+1] the weight function is sqrt(1-x^2), called sometimes the Wigner semicircle (plot it to 
see why)). This is a classical orthogonal polynomial system, implying, that besides the three term 



recurrence it also satisfies a differential equation of the hypergeometric type. It belongs to the class of 
Jacobi polynomials {P^{(alpha,beta)}(n,x)} if one puts alpha=1/2 = beta and replaces x by x/2:  

S(n,x) =((n+1)!/risefac(3/2,n)) P^{(1/2,1/2)}(x/2) = C^{(1)} (x/2) 

with the ultra-spherical or Gegenbauer polynomials C^(lambda)}(x) (risefac(x,n) := x(x+1)...(x+(n-
1))).  This hypergeometric differential equation is: 

(4-x^2)*diff(S(n,x),x$2) - 3*x*diff(S(n,x),x) + n*(n+2)*S(n,x) = 0,  n>=0.   

This orthogonal polynomial connection is intimately tied to continued fractions. The n-th 
approximation to the Jacobi continued fraction for the S-polynomials is  

J(n,x) =  1/(x-1/(x-1/(x- ...) n brackets)  = S(n-1,x)/S(n,x), n>=1. 

The S-polynomials are called the denominator polynomials of the continued fraction approximation, 
and here the numerator polynomials turn out to be also S-polynomials because their recurrence 
coefficients are n-independent.

(6) In q- (or basic) analysis one uses the q-numbers 

[n]_q = (q^n - (1/q)^n)/(q - 1/q) = S(n-1,q+1/q), 

which reduce to n for q -> 1 (use the finite geometric series or l'Hospital's rule). This is just the well 
known Binet-de Moivre form of the S-polynomials, obtained from their ordinary  generating function 
by expansion.

(7) In the study of Diophantine equations the so called Pell equation x^2 - d y^2 =1, with square-free d, 
has general solution

x_k = T(k+1,x_1) = (S(k+1,2*x_1) - S(k-1,2*x_1))/2 and y_k = y_1*S(k,2*x_1),

with the solution (x_1,y_1) with the smallest x_1 not +/-1. E.g., d=5 has (x_1,y_1) = (9,4).  For 
(x_1(d),y_1(d)) see the sequences (A033313,A033317). 

(8) In the theory of algebraic numbers a factorization of S(n-1,x) over the rationals appears in the 
recursive definition of the minimal polynomials Psi(n,x) for the algebraic number cos(2 pi/n), n>=1. 
See the Watkins and Zeitlin reference given in A181875, where one finds also a link listing these 
minimal polynomials.  The formula is

S(n-1,x) = 2^(n-1)*product(Psi(d,x/2), 2<d dividing 2n), n>=1.

Similarly,

S(2n,sqrt(2-x)) = 2^n*product(Psi(d,x/2), 1<d dividing 2n+1), n>=0. 

(9) For applications in approximation theory for functions see the Th. Rivlin book (reference given 
under this triangle A049310), where the monic T_n-polynomials feature because of their minimal 
property to have among the monic  real polynomials of degree n on the interval [-1,+1] the smallest 



maximal absolute value (deviation from 0).

(10) Finally, the most important property of the S-polynomials which is responsible for many of their 
properties is that their coefficients lead to an (ordinary) convolution triangle, meaning that, from the 
second column on, consecutive columns are obtained via convolution. This is a result of the structure of 
the column o.g.f.s  

G(m,x) = G(x)*(x*Fhat(x))^k, k>=0,

with G and Fhat some formal power series starting with 1. Such convolution matrices (with zeros 
filling all entries above the diagonal of the triangle) are called Riordan matrices, denoted by 
(G(z),F(z)), with F(z)=z*Fhat(z). The simplest nontrivial example (the trivial one is  the unit matrix 
with the monomials x^n as row polynomials) for such a convolution triangle is, of course, Pascal's 
triangle A007318. The ordinary generating function (o.g.f.) of the row polynomials R(n,x) is  then 
G(z,x) := G(z)/(1 - x F(z)).  Under matrix multiplication this convolution property is preserved and one 
speaks of the Riordan group. See the L. W. Shapiro, et al. reference given under A007318 .   In our case 
G(z)=Fhat(z)=1/(1+z^2), and this  belongs to a subgroup, called the (E. T.) Bell group (check that the 
o.g.f. is indeed  the one for the S-polynomials). 
Therefore the  o.g.f.s for the column no. m, m>=0,  sequences are: 

G(m,x) = x^m/(1+z)^(m+1).

The o.g.f.  for the row sums  is R(n,x) = 1/(1-x +x^2), which generates  the periodic(1,1,0,-1,-1,0) 
sequence found as A010892, and the one for the alternating row sums is aR(x)= 1/(1+x +x^2), which 
generates periodic(1,-1,0) found as A049347. It also leads to the o.g.f. for the so-called A- and Z-
sequences (see A06322, with a W. Lang link with the definition of A- and Z-sequences for Riordan 
arrays  and references, especially those for  D. G. Rodgers and D. Merlini et al.)  A(x)=1-x^2*c(x^2), 
with c(x) the o.g.f. for the Catalan numbers A000108, which generates [1,0,-1,0,-1,0,-2,0,...], and the 
one for the Z-sequence Z(x) = -x*c(x^2), which generates -[0,1,0,1,0,2,0,0, 5,...] found under 
-A1261290. These A- and Z-sequences yield a recurrence relations for the Riordan (or Bell) matrix 
entries (see the formula section of the triangle) which is different from the usual one given also there.    
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