This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018913 a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1. 20
 0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Define the sequence L(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0. This is L(1,9). For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 9's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011 For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,8}. - Milan Janjic, Jan 25 2015 Not to be confused with the Pisot L(1,9) sequence, which is A001019. - R. J. Mathar, Feb 13 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38. D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242. A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=9, q=-1. M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=11. Index entries for linear recurrences with constant coefficients, signature (9,-1). FORMULA G.f.: x/(1-9*x+x^2). a(n) = S(2*n-1, sqrt(11))/sqrt(11) = S(n-1, 9); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0. a(n) = (((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n)/sqrt(77). - Barry E. Williams, Aug 21 2000 G.f.: x/(1-9*x+x^2). - Barry E. Williams, Aug 21 2000 a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*8^k. - Philippe Deléham, Feb 10 2012 Product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + sqrt(77)). - Peter Bala, Dec 23 2012 Product {n >= 2} (1 - 1/a(n)) = 1/18*(7 + sqrt(77)). - Peter Bala, Dec 23 2012 EXAMPLE G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ... MATHEMATICA Join[{a=0, b=1}, Table[c=9*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *) CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *) PROG (Sage) [lucas_number1(n, 9, 1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012 (PARI) concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017 CROSSREFS Cf. A000027, A001906, A001353, A004254, A001109, A004187, A001090. Cf. A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((A056918(n)^2 - 4)/77). Sequence in context: A081108 A176174 A242632 * A192214 A127265 A055070 Adjacent sequences:  A018910 A018911 A018912 * A018914 A018915 A018916 KEYWORD nonn,easy AUTHOR EXTENSIONS G.f. adapted to the offset by Vincenzo Librandi, Dec 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 08:16 EST 2018. Contains 318219 sequences. (Running on oeis4.)