login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].
4

%I #59 Apr 13 2021 18:39:31

%S 1,1,2,1,3,3,1,4,8,4,1,5,15,21,5,1,6,24,56,55,6,1,7,35,115,209,144,7,

%T 1,8,48,204,551,780,377,8,1,9,63,329,1189,2640,2911,987,9,1,10,80,496,

%U 2255,6930,12649,10864,2584,10,1,11,99,711,3905,15456,40391,60605,40545,6765,11

%N Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].

%C Row sums = A179944: (1, 3, 7, 17, 47, 148, 518,...)

%C Row 1 = A001906, row 2 = A001353, row 3 = A004254, row 4 = A001109, row 5 = A004187, row 6 = A001090, row 7 = A018913, row 9 = A004189.

%C Let S_m(x) be the m-th Chebyshev S-polynomial, described by _Wolfdieter Lang_ in his draft [Lang], defined by S_0(x)=1, S_1(x)=x and S_m(x)=x*S_{m-1}(x)-S_{m-2}(x) (m>1). Let A = (A(r,c)) denote the rectangular array (not the triangle). Then A(r,c) = S_c(r+2), r,c=0,1,2,.... - _L. Edson Jeffery_, Aug 14 2011

%C As to the array, (n+1)-th row is the INVERT transform of n-th row. - _Gary W. Adamson_, Jun 30 2013

%C If the array sequences are labeled (2,3,4,...) for the n-th sequence, convergence tends to (n + sqrt(n^2 - 4))/2. - _Gary W. Adamson_, Aug 20 2013

%H Alois P. Heinz, <a href="/A179943/b179943.txt">Rows n = 0..140, flattened</a>

%H Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, <a href="https://arxiv.org/abs/2012.14991">Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras</a>, arXiv:2012.14991 [math.CO], 2020.

%H W. Lang, <a href="/A049310/a049310appl.pdf ">Chebyshev S-polynomials: ten applications.</a>

%F Antidiagonals of an array, (r,k), a(k) = (r+2)*a(k-1) - a*(k-2), r=0,1,2,... where (r,k) = term (2,1) in the 2 X 2 matrix [1,r; 1,r+1]^(k+1).

%F G.f. for row r of array: 1/(1 - (r+2)*x + x^2). - _L. Edson Jeffery_, Oct 26 2012

%e First few rows of the array =

%e .

%e 1,...2,...3,....4,....5,....6,......7,...

%e 1,...3,...8,...21,...55,..144,....377,...

%e 1,...4,..15,...56,..209,..780,...2911,...

%e 1,...5,..24,..115,..551,.2640,..12649,...

%e 1,...6,..35,..204,.1189,.6930,..40391,...

%e .

%e Taking antidiagonals, we obtain triangle A179943:

%e .

%e 1;

%e 1, 2;

%e 1, 3, 3;

%e 1, 4, 8, 4;

%e 1, 5, 15, 21, 5;

%e 1, 6, 24, 56, 55, 6;

%e 1, 7, 35, 115, 209, 144, 7;

%e 1, 8, 48, 204, 551, 780, 377, 8;

%e 1, 9, 63, 329, 1189, 2640, 2911, 987, 9;

%e 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10;

%e 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11;

%e 1, 12, 120, 980, 6319, 30744, 105937, 235416, 290376, 151316, 17711, 12;

%e ...

%e Examples: Row 1 of the array: (1, 3, 8, 21, 55, 144,...); 144 = term (1,5) of the array = term (2,1) of M^6; where M = the 2 X 2 matrix (1,1; 1,2] and M^6 = [89, 144; 144,233].

%e Term (1,5) of the array = 144 = (r+2)*(term (1,4)) - (term (1,3)) = 3*55 - 21.

%p invtr:= proc(b) local a;

%p a:= proc(n) option remember; local i;

%p `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end

%p end:

%p A:= proc(n) A(n):= `if`(n=0, k->k+1, invtr(A(n-1))) end:

%p seq(seq(A(d-k)(k), k=0..d), d=0..10); # _Alois P. Heinz_, Jul 17 2013

%p # using observation by _Gary W. Adamson_

%t a[_, 0] = 0; a[_, 1] = 1; a[r_, k_] := a[r, k] = (r+1)*a[r, k-1] - a[r, k-2]; Table[a[r-k+2, k], {r, 0, 10}, {k, 1, r+1}] // Flatten (* _Jean-François Alcover_, Feb 23 2015 *)

%Y Cf. A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.

%K nonn,tabl

%O 0,3

%A _Gary W. Adamson_, Aug 07 2010