login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208597 T(n,k) = number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero. 14
1, 1, 2, 1, 3, 3, 1, 4, 7, 6, 1, 5, 13, 23, 11, 1, 6, 21, 60, 77, 26, 1, 7, 31, 125, 291, 297, 57, 1, 8, 43, 226, 791, 1564, 1163, 142, 1, 9, 57, 371, 1761, 5457, 8671, 4783, 351, 1, 10, 73, 568, 3431, 14838, 39019, 49852, 20041, 902, 1, 11, 91, 825, 6077, 34153, 129823 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 185 terms from R. H. Hardin)

FORMULA

T(n,k) = Sum_{d|n} phi(n/d) * A201552(d, k). - Andrew Howroyd, Oct 14 2017

Empirical for row n:

n=1: a(k) = 1.

n=2: a(k) = k + 1.

n=3: a(k) = k^2 + k + 1.

n=4: a(k) = (4/3)*k^3 + 2*k^2 + (5/3)*k + 1.

n=5: a(k) = (23/12)*k^4 + (23/6)*k^3 + (37/12)*k^2 + (7/6)*k + 1.

n=6: a(k) = (44/15)*k^5 + (22/3)*k^4 + (23/3)*k^3 + (14/3)*k^2 + (12/5)*k + 1.

n=7: a(k) = (841/180)*k^6 + (841/60)*k^5 + (325/18)*k^4 + (51/4)*k^3 + (949/180)*k^2 + (37/30)*k + 1.

EXAMPLE

Table starts

...1....1.....1......1.......1.......1........1........1........1.........1

...2....3.....4......5.......6.......7........8........9.......10........11

...3....7....13.....21......31......43.......57.......73.......91.......111

...6...23....60....125.....226.....371......568......825.....1150......1551

..11...77...291....791....1761....3431.....6077....10021....15631.....23321

..26..297..1564...5457...14838...34153....69784...130401...227314....374825

..57.1163..8671..39019..129823..353333...833253..1764925..3438877...6267735

.142.4783.49852.288317.1172298.3770475.10259448.24627705.53630854.108036775

MATHEMATICA

comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r-1-i*m, k-1]*Binomial[k, i], {i, 0, Floor[(r-k)/m]}]; a[n_, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2k+1, #]&]/n; Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Oct 07 2017, after Andrew Howroyd's PARI code *)

PROG

(PARI)

comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));

a(n, k)=sumdiv(n, d, eulerphi(n/d)*comps(d*(k+1), 2*k+1, d))/n;

for(n=1, 8, for(k=1, 10, print1(a(n, k), ", ")); print()); \\ Andrew Howroyd, May 16 2017

(Python)

from sympy import binomial, divisors, totient, floor

def comps(r, m, k): return sum([(-1)**i*binomial(r - 1 - i*m, k - 1)*binomial(k, i) for i in range(floor((r - k)/m) + 1)])

def a(n, k): return sum([totient(n//d)*comps(d*(k + 1), 2*k + 1, d) for d in divisors(n)])//n

for n in range(1, 12): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 07 2017, after PARI code

(R)

require(numbers)

comps <- function(r, m, k) {

  S <- numeric()

  for (i in 0:floor((r-k)/m)) S <- c(S, (-1)^i*choose(r-1-i*m, k-1)*choose(k, i))

  return(sum(S))

}

a <- function(n, k) {

  S <- numeric()

  for (d in divisors(n)) S <- c(S, eulersPhi(n/d)*comps(d*(k+1), 2*k+1, d))

  return(sum(S)/n)

}

for (n in 1:11) {

  for (k in 1:n) {

    print(a(k, n-k+1))

  }

} # Indranil Ghosh, Nov 07 2017, after PARI code

CROSSREFS

Columns 1-7 are A208602, A208591, A208592, A208593, A208594, A208595, A208596.

Rows 3-7 are A002061(n+1), A208598, A208599, A208600, A208601.

Main diagonal is A208590.

Cf. A201552, A286928, A208825.

Sequence in context: A185943 A208337 A208335 * A179943 A089944 A180165

Adjacent sequences:  A208594 A208595 A208596 * A208598 A208599 A208600

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Feb 29 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 12:38 EDT 2021. Contains 345129 sequences. (Running on oeis4.)