login
A208591
Number of n-bead necklaces labeled with numbers -2..2 not allowing reversal, with sum zero.
2
1, 3, 7, 23, 77, 297, 1163, 4783, 20041, 85735, 371955, 1634429, 7254547, 32486709, 146576693, 665720447, 3041096613, 13963651875, 64410421307, 298331882891, 1386933722321, 6469566027565, 30271114380919, 142037330038069, 668187211909327
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A005191(d). - Andrew Howroyd, Mar 02 2017
EXAMPLE
All solutions for n=3:
.-2...-1...-2...-2....0...-1...-1
..2...-1....1....0....0....1....0
..0....2....1....2....0....0....1
MATHEMATICA
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 2]; Array[a, 25] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
CROSSREFS
Column 2 of A208597.
Sequence in context: A205481 A341071 A148712 * A104088 A169650 A346771
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 29 2012
EXTENSIONS
a(22)-a(25) from Andrew Howroyd, Mar 02 2017
STATUS
approved