login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253668
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](log(x+1)*sum(j=0..n, C(n,j)*x^j)), n>=0, k>=0.
0
0, 0, 1, 0, 1, -1, 0, 1, 1, 2, 0, 1, 3, -1, -6, 0, 1, 5, 2, 2, 24, 0, 1, 7, 11, -2, -6, -120, 0, 1, 9, 26, 6, 4, 24, 720, 0, 1, 11, 47, 50, -6, -12, -120, -5040, 0, 1, 13, 74, 154, 24, 12, 48, 720, 40320, 0, 1, 15, 107, 342, 274, -24, -36, -240, -5040, -362880
OFFSET
0,10
FORMULA
T(n,n) = A000254(n).
EXAMPLE
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 0, 1, -1, 2, -6, 24, -120, ...
[1] 0, 1, 1, -1, 2, -6, 24, ...
[2] 0, 1, 3, 2, -2, 4, -12, ...
[3] 0, 1, 5, 11, 6, -6, 12, ...
[4] 0, 1, 7, 26, 50, 24, -24, ...
[5] 0, 1, 9, 47, 154, 274, 120, ...
[6] 0, 1, 11, 74, 342, 1044, 1764, ...
The first few rows as a triangle:
0,
0, 1,
0, 1, -1,
0, 1, 1, 2,
0, 1, 3, -1, -6,
0, 1, 5, 2, 2, 24,
0, 1, 7, 11, -2, -6, -120,
0, 1, 9, 26, 6, 4, 24, 720.
MAPLE
T := (n, k) -> k!*coeff(series(ln(x+1)*add(binomial(n, j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n, k), k=0..6)) od;
CROSSREFS
Cf. A000254.
Sequence in context: A239498 A079219 A197707 * A216220 A334892 A216235
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 18 2015
STATUS
approved