login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197707
G.f.: A(x) = 1 + Sum_{n>=1} x^(n^2) * ((1-x)^n + 1/(1-x)^n).
3
1, 2, 0, 1, 3, 1, 5, 5, 6, 9, 8, 18, 19, 26, 33, 41, 52, 60, 87, 99, 132, 166, 209, 261, 323, 398, 481, 604, 716, 893, 1086, 1331, 1629, 1991, 2428, 2952, 3578, 4314, 5217, 6229, 7508, 8967, 10737, 12838, 15345, 18334, 21894, 26127, 31149, 37093, 44100
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = Product_{n>=1} (1 - x^(2*n)) * (1 + x^(2*n-1)*(1-x)) * (1 + x^(2*n-1)/(1-x)), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 2*x + x^3 + 3*x^4 + x^5 + 5*x^6 + 5*x^7 + 6*x^8 +...
where the g.f. A(x) may be expressed as the q-series:
A(x) = 1 + x*((1-x) + 1/(1-x)) + x^4*((1-x)^2 + 1/(1-x)^2) + x^9*((1-x)^3 + 1/(1-x)^3) + x^16*((1-x)^4 + 1/(1-x)^4) +...
and the Jacobi triple product:
A(x) = (1-x^2)*(1+x*(1-x))*(1+x/(1-x)) * (1-x^4)*(1+x^3*(1-x))*(1+x^3/(1-x)) * (1-x^6)*(1+x^5*(1-x))*(1+x^5/(1-x)) *...
PROG
(PARI) {a(n)=local(A); A=1+sum(m=1, sqrtint(n)+1, x^(m^2)*((1-x)^m+1/(1-x+x*O(x^n))^m)); polcoeff(A, n)}
(PARI) {a(n)=local(A); A=prod(m=1, n\2+1, (1-x^(2*m))*(1+x^(2*m-1)*(1-x))*(1+x^(2*m-1)/(1-x+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
Cf. A190791.
Sequence in context: A029274 A239498 A079219 * A253668 A216220 A334892
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 17 2011
STATUS
approved