The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253672 Another fractal t(h)ree. 1
 0, 1, 2, 0, 1, 3, 4, 5, 2, 0, 1, 3, 4, 6, 7, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 17, 14, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A008585(n+1) = length pf row n; A062741(n+1) = sum of row n; the fractal nature is illustrated by the following manipulation: remove from all rows the first two terms and also the last one, after subtracting all terms by 3, the original t(h)ree will reappear. LINKS Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened Éric Angelini, More (and more) fractal trees - and erasures, SeqFan list, Jan 08 2015. FORMULA T(n,0) = 0; T(n,1)=1; T(n,2*n-1) = 2; T(n+1,k+2) = T(n,k)+3, k = 0..3*n-1. EXAMPLE .  0:                                     | 0  1  2| .  1:                                0  1 | 3  4  5|  2 .  2:                          0  1  3  4 | 6  7  8|  5  2 .  3:                    0  1  3  4  6  7 | 9 10 11|  8  5  2 .  4:              0  1  3  4  6  7  9 10 |12 13 14| 11  8  5  2 .  5:          0 1 3  4  6  7  9 10 12 13 |15 16 17| 14 11  8  5 2 .  6:      0 1 3 4 6  7  9 10 12 13 15 16 |18 19 20| 17 14 11  8 5 2 .  7:  0 1 3 4 6 7 9 10 12 13 15 16 18 19 |21 22 23| 20 17 14 11 8 5 2 . PROG (Haskell) a253672 n k = a253672_tabf !! n !! k a253672_row n = a253672_tabf !! n a253672_tabf = [0, 1, 2] : f [] [0, 1, 2] [] (iterate (map (+ 3)) [3..5]) where    f as bs cs (uvws:uvwss) = (as' ++ uvws ++ cs') : f as' uvws cs' uvwss      where as' = as ++ [u, v]; cs' = [w] ++ cs            [u, v, w] = bs a253672_list = concat a253672_tabf CROSSREFS Cf. A008585, A062741. Sequence in context: A207331 A134405 A091612 * A213861 A108458 A254281 Adjacent sequences:  A253669 A253670 A253671 * A253673 A253674 A253675 KEYWORD nonn,tabf AUTHOR Eric Angelini and Reinhard Zumkeller, Jan 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)