The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291680 Number T(n,k) of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 2; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 15
 1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 9, 8, 4, 0, 1, 25, 36, 20, 10, 0, 1, 71, 156, 108, 58, 26, 0, 1, 205, 666, 586, 340, 170, 74, 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218, 0, 1, 1833, 12336, 16230, 11888, 6772, 3550, 1672, 672, 0, 1, 5635, 53518, 85150, 69274, 42366, 23284, 11840, 5454, 2126 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA T(n,n) = A206464(n-1) for n>0. Sum_{k=0..n} T(n,k) = A264868(n+1). EXAMPLE T(4,1) = 1: 1234. T(4,2) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431. T(4,3) = 8: 1423, 1432, 3124, 3142, 3214, 3241, 3412, 3421. T(4,4) = 4: 4213, 4231, 4312, 4321. T(5,5) = 10: 53124, 53142, 53214, 53241, 53412, 53421, 54213, 54231, 54312, 54321. Triangle T(n,k) begins:   1;   0, 1;   0, 1,   1;   0, 1,   3,    2;   0, 1,   9,    8,    4;   0, 1,  25,   36,   20,   10;   0, 1,  71,  156,  108,   58,   26;   0, 1, 205,  666,  586,  340,  170,  74;   0, 1, 607, 2860, 3098, 2014, 1078, 528, 218; MAPLE b:= proc(u, o, k) option remember; `if`(u+o=0, 1,       add(b(u-j, o+j-1, k), j=1..min(2, u))+       add(b(u+j-1, o-j, k), j=1..min(k, o)))     end: T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12); MATHEMATICA b[u_, o_, k_] := b[u, o, k] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, k], {j, 1, Min[2, u]}] + Sum[b[u+j-1, o-j, k], {j, 1, Min[k, o]}]]; T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k-1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *) PROG (Python) from sympy.core.cache import cacheit @cacheit def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)]) def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1)) for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 30 2017 CROSSREFS Columns k=0-10 give: A000007, A057427, A291683, A321110, A321111, A321112, A321113, A321114, A321115, A321116, A321117. T(2n,n) gives A320290. Cf. A203717, A206464, A264868. Sequence in context: A322324 A142071 A350448 * A193283 A193277 A118972 Adjacent sequences:  A291677 A291678 A291679 * A291681 A291682 A291683 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Aug 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 16:18 EDT 2022. Contains 356215 sequences. (Running on oeis4.)