login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206464
Number of length-n Catalan-RGS (restricted growth strings) such that the RGS is a valid mixed-radix number in falling factorial basis.
4
1, 1, 2, 4, 10, 26, 74, 218, 672, 2126, 6908, 22876, 77100, 263514, 911992, 3189762, 11261448, 40083806, 143713968, 518594034, 1882217168, 6867064856, 25172021144, 92666294090, 342467464612, 1270183943200, 4726473541216, 17640820790092, 66025467919972
OFFSET
0,3
COMMENTS
Catalan-RGS are strings with first digit d(0)=zero, and d(k+1) <= d(k)+1, falling factorial mixed-radix numbers have last digit <= 1, second last <= 2, etc.
The digits of the RGS are <= floor(n/2).
The first few terms are the same as for A089429.
Column k=0 of A264869. - Peter Bala, Nov 27 2015
a(n) = A291680(n+1,n+1). - Alois P. Heinz, Aug 29 2017
LINKS
FORMULA
Conjecture: a(n) = Sum_{k = 0..floor(n/4)} (-1)^k * C(floor(n/2) + 1 - k, k + 1) * a(n - 1 - k), a(0) = 1. - Gionata Neri, Jun 17 2018
EXAMPLE
The a(5)=26 strings for n=5 are (dots for zeros):
1: [ . . . . . ]
2: [ . . . . 1 ]
3: [ . . . 1 . ]
4: [ . . . 1 1 ]
5: [ . . 1 . . ]
6: [ . . 1 . 1 ]
7: [ . . 1 1 . ]
8: [ . . 1 1 1 ]
9: [ . . 1 2 . ]
10: [ . . 1 2 1 ]
11: [ . 1 . . . ]
12: [ . 1 . . 1 ]
13: [ . 1 . 1 . ]
14: [ . 1 . 1 1 ]
15: [ . 1 1 . . ]
16: [ . 1 1 . 1 ]
17: [ . 1 1 1 . ]
18: [ . 1 1 1 1 ]
19: [ . 1 1 2 . ]
20: [ . 1 1 2 1 ]
21: [ . 1 2 . . ]
22: [ . 1 2 . 1 ]
23: [ . 1 2 1 . ]
24: [ . 1 2 1 1 ]
25: [ . 1 2 2 . ]
26: [ . 1 2 2 1 ]
MAPLE
b:= proc(i, l) option remember;
`if`(i<=0, 1, add(b(i-1, j), j=0..min(l+1, i)))
end:
a:= n-> b(n-1, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 08 2012
MATHEMATICA
b[i_, l_] := b[i, l] = If[i <= 0, 1, Sum[b[i-1, j], {j, 0, Min[l+1, i]}]];
a[n_] := b[n-1, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 08 2012
STATUS
approved