The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264869 Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2. 5
 1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 10, 16, 22, 22, 22, 26, 48, 70, 92, 92, 92, 74, 144, 236, 328, 420, 420, 420, 218, 454, 782, 1202, 1622, 2042, 2042, 2042, 672, 1454, 2656, 4278, 6320, 8362, 10404, 10404, 10404, 2126, 4782, 9060, 15380, 23742, 34146, 44550, 54954, 54954, 54954 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS See Figure 3(a) in Gascuel et al. (2003). REFERENCES O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005 LINKS O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, (2003) The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118. J. Yang and L. Zhang, On Counting Tandem Duplication Trees, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163. FORMULA T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1. T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2. EXAMPLE Triangle begins   n\k|   0    1    2    3    4    5    6    7   ---+---------------------------------------    2 |   1    3 |   1    1    4 |   2    2    2    5 |   4    6    6    6    6 |  10   16   22   22   22    7 |  26   48   70   92   92   92    8 |  74  144  236  328  420  420  420    9 | 218  454  782 1202 1622 2042 2042 2042   ... MAPLE A264869 := proc (n, k) option remember; `if`(n <= 2, 1, add(A264869(n - 1, j), j = 0 .. min(k + 1, n - 3))) end proc: seq(seq(A264869(n, k), k = 0..n - 2), n = 2..11); CROSSREFS Cf. A206464 (column 0), A264868 (row sums and main diagonal), A086521. Sequence in context: A103265 A008238 A218870 * A292728 A096575 A002722 Adjacent sequences:  A264866 A264867 A264868 * A264870 A264871 A264872 KEYWORD nonn,tabl,easy AUTHOR Peter Bala, Nov 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 17:02 EDT 2020. Contains 334787 sequences. (Running on oeis4.)