The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264872 Array read by antidiagonals: T(n,m) = 2^n*(1+2^n)^m; n,m >= 0. 0
 1, 2, 2, 4, 6, 4, 8, 18, 20, 8, 16, 54, 100, 72, 16, 32, 162, 500, 648, 272, 32, 64, 486, 2500, 5832, 4624, 1056, 64, 128, 1458, 12500, 52488, 78608, 34848, 4160, 128, 256, 4374, 62500, 472392, 1336336, 1149984, 270400, 16512, 256, 512, 13122, 312500 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Start with an n X m rectangle and cut it vertically along any set of the m-1 separators. There are binomial(m-1,c) ways of doing this with 0 <= c < m cuts. Inside each of these 1+c regions cut vertically, for which there are 2^(n-1) choices. The total number of ways of dissecting the rectangle into rectangles in this way is Sum_{c=0..m-1} binomial(m-1,c) 2^((1+c)(n-1)) = 2^(n-1)*(1+2^(n-1))^(m-1) = T(n-1,m-1). The symmetrized version of the array is S(n,m) = T(n,m) + T(m,n) - 2^(m+n) <= A116694(n,m), which counts tilings that start with guillotine cuts either horizontally or vertically, avoiding double counting of the tilings where the order of the cuts does not matter. - R. J. Mathar, Nov 29 2015 LINKS R. J. Mathar, Counting 2-way monotonic terrace forms over rectangular landscapes, vixra:1511.0225 (2015), Section 6. FORMULA T(n,m) = 2^n*A264871(n,m). T(n,m) <= A116694(n+1,m+1). EXAMPLE 1,    2,     4,       8,       16,         32, ...    2,    6,    18,      54,      162,        486, ...    4,   20,   100,     500,     2500,      12500, ...    8,   72,   648,    5832,    52488,     472392, ...   16,  272,  4624,   78608,  1336336,   22717712, ...   32, 1056, 34848, 1149984, 37949472, 1252332576, ... . The symmetrized version S(n,m) starts    1,    2,     4,       8,       16,         32, ...    2,    8,    30,     110,      402,       1478, ...    4,   30,   184,    1116,     7060,      47220, ...    8,  110,  1116,   11600,   130968,    1622120, ...   16,  402,  7060,  130968,  2672416,   60666672, ...   32, 1478, 47220, 1622120, 60666672, 2504664128, ... MATHEMATICA Table[2^(n - m) (1 + 2^(n - m))^m, {n, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *) CROSSREFS Cf. A000079 (row and column 0), A008776 (row 1), A005054 (row 2), A055275 (row 3), A063376 (column 1). Sequence in context: A252828 A208314 A078099 * A303306 A347797 A118960 Adjacent sequences:  A264869 A264870 A264871 * A264873 A264874 A264875 KEYWORD nonn,tabl,easy AUTHOR R. J. Mathar, Nov 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 15:36 EST 2021. Contains 349526 sequences. (Running on oeis4.)