login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206463
G.f. satisfies: A(x*D(-x)) = x where D(x) = g.f. of A014577, the dragon curve sequence.
0
1, 1, 2, 6, 19, 63, 220, 796, 2951, 11155, 42846, 166738, 655990, 2604868, 10426448, 42023678, 170407186, 694723354, 2845839124, 11707587484, 48350311989, 200377116719, 833062172188, 3473507707930, 14521668486233, 60859782366097, 255639891601242
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 63*x^6 + 220*x^7 + 796*x^8 +...
such that A(x*D(-x)) = x and D(x) is the g.f. of the dragon curve:
D(x) = 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + x^12 + x^15 + x^16 + x^17 + x^19 + ...
PROG
(PARI) {A014577(n) = if( n%2, A014577(n\2), 1 - (n/2%2))}
{a(n)=local(DC=vector(n+1, k, (-1)^(k-1)*A014577(k-1))); polcoeff(serreverse(x*Ser(DC)), n)}
for(n=0, 61, print1(a(n), ", "))
CROSSREFS
Cf. A014577.
Sequence in context: A071969 A063030 A372531 * A148467 A148468 A148469
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2012
STATUS
approved