|
|
A321114
|
|
Number of permutations p of [n] such that in 0p the largest up-jump equals seven and no down-jump is larger than 2.
|
|
2
|
|
|
74, 528, 3550, 23284, 151096, 974472, 6252218, 39892080, 253727936, 1611713082, 10230277342, 64911693746, 411813289010, 2612751224650, 16579665387410, 105238154698686, 668214471729004, 4244427360639456, 26970709343926262, 171451330997483406, 1090351846894142818
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,1
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 7..1000
|
|
MAPLE
|
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(2, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
a:= n-> (k-> b(0, n, k)-b(0, n, k-1))(7):
seq(a(n), n=7..30);
|
|
CROSSREFS
|
Column k=7 of A291680.
Sequence in context: A238022 A296025 A204362 * A205584 A280402 A250913
Adjacent sequences: A321111 A321112 A321113 * A321115 A321116 A321117
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Oct 27 2018
|
|
STATUS
|
approved
|
|
|
|