login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142071
Expansion of the exponential generating function 1 - log(1 - x*(exp(z) - 1)), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.
1
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 7, 12, 6, 0, 1, 15, 50, 60, 24, 0, 1, 31, 180, 390, 360, 120, 0, 1, 63, 602, 2100, 3360, 2520, 720, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 0, 1, 511, 18660
OFFSET
0,9
COMMENTS
Row n gives the coefficients which express the sums of the n-th powers of the integers as a linear combination of binomial coefficients, thus:
Sum_{k=1..r} k^n = A103438(n+r,r) = Sum_{k=0..n} T(n+1,k) * C(r,k),
where, by convention, C(r,k) = 0 whenever r < k. - Robert B Fowler, Jan 16 2023
FORMULA
Row n gives the coefficients of the polynomial defined by p(x, 0) = 1 and for n > 0 p(x, n) = Sum_{k >= 0} k^(n-1)*(x/(1 + x))^k = PolyLog(-n+1, x/(1+x)).
T(n, k) = (k - 1)! * Stirling2(n, k) for k > 0. - Detlef Meya, Jan 06 2024
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 7, 12, 6;
0, 1, 15, 50, 60, 24;
0, 1, 31, 180, 390, 360, 120;
0, 1, 63, 602, 2100, 3360, 2520, 720;
0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040;
...
MAPLE
CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
A142071row := proc(n) 1 - log(1 - x*(exp(z) - 1)):
series(%, z, 12): CL(n!*coeff(%, z, n), x) end:
for n from 0 by 1 to 7 do A142071row(n) od;
# Alternative:
A142071Row := proc(n) if n=0 then [1] else
CL(convert(series(polylog(-n+1, z/(1+z)), z, n*2), polynom), z) fi end:
seq(A142071Row(n), n=0..6); # Peter Luschny, Sep 06 2018
MATHEMATICA
T[n_, k_] := If[k==0, Floor[1/(n + 1)], (k - 1)!*StirlingS2[n, k]]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 06 2024 *)
CROSSREFS
Column k = 0 is A000007.
Cf. A028246, A163626, A000629 (row sums).
Cf. A103438, A007318 (binomial coefficients).
Sequence in context: A154477 A363674 A322324 * A350448 A291680 A193283
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited, T(0,0) = 1 prepended and new name by Peter Luschny, Sep 06 2018
STATUS
approved