login
A142070
Triangle T(n,k) read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (i+1)*x-i in row n>=0 and column 0<=k<=n.
1
1, -1, 2, 2, -7, 6, -6, 29, -46, 24, 24, -146, 329, -326, 120, -120, 874, -2521, 3604, -2556, 720, 720, -6084, 21244, -39271, 40564, -22212, 5040, -5040, 48348, -197380, 444849, -598116, 479996, -212976, 40320, 40320, -432144, 2014172, -5335212, 8788569, -9223012, 6023772, -2239344, 362880
OFFSET
0,3
COMMENTS
This is essentially a signed version of A088996. - Peter Bala, Jan 09 2017
FORMULA
T(n, k) = [x^k]( Product_{j=1..n} ((1+j)*x - j) ).
Sum_{k=0..n} T(n, k) = 1.
From G. C. Greubel, Feb 24 2022: (Start)
T(n, k) = (-1)^(n-k) * Sum_{j=0..n} (-1)^j*binomial(j,n-k)*Stirling1(n+1, n-j+1).
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(j+n-k,n-k)*Stirling1(n+1, k-j+1).
T(n, 0) = (-1)^n * n!.
T(n, n) = (n+1)!. (End)
EXAMPLE
Triangle begins as:
1;
-1, 2;
2, -7, 6;
-6, 29, -46, 24;
24, -146, 329, -326, 120;
-120, 874, -2521, 3604, -2556, 720;
720, -6084, 21244, -39271, 40564, -22212, 5040;
-5040, 48348, -197380, 444849, -598116, 479996, -212976, 40320;
40320, -432144, 2014172, -5335212, 8788569, -9223012, 6023772, -2239344, 362880;
MAPLE
A142070 := proc(n, k)
local x, i ;
mul( (i+1)*x-i, i=1..n) ;
expand(%) ;
coeff(%, x, k) ;
end proc:
MATHEMATICA
(* First program *)
p[x_, n_]:= Product[(i+1)*x - i, {i, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k]= Sum[(-1)^j*Binomial[j+n-k, n-k]*StirlingS1[n+1, k-j+1], {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 24 2022 *)
PROG
(Magma)
A142070:= func< n, k | (-1)^(n-k)*(&+[(-1)^j*Binomial(j, n-k)*StirlingFirst(n+1, n-j+1): j in [0..n]]) >;
[A142070(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 24 2022
(Sage)
def A142070(n, k): return (-1)^(n-k)*sum(binomial(j+n-k, n-k)*stirling_number1(n+1, k-j+1) for j in (0..k))
flatten([[A142070(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 24 2022
(PARI) row(n) = Vecrev(prod(j=1, n, (1+j)*x - j)); \\ Michel Marcus, Feb 24 2022
CROSSREFS
Sequence in context: A006748 A193548 A131049 * A152825 A347073 A261710
KEYWORD
sign,tabl,easy
AUTHOR
STATUS
approved