login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189923
Jordan function J_{-5}(n) multiplied by n^5.
3
1, -31, -242, -31, -3124, 7502, -16806, -31, -242, 96844, -161050, 7502, -371292, 520986, 756008, -31, -1419856, 7502, -2476098, 96844, 4067052, 4992550, -6436342, 7502, -3124, 11510052, -242, 520986, -20511148, -23436248
OFFSET
1,2
COMMENTS
For the Jordan function J_k see the Comtet and Apostol references.
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000 (terms 1..200 from Indranil Ghosh)
FORMULA
a(n) = J_{-5}(n)*n^5 = Product_{p prime |n} (1-p^5), for n>=2, a(1)=1.
a(n) = Sum_{d|n} mu(d)*d^5 with the Moebius function mu = A008683.
Dirichlet g.f.: zeta(s)/zeta(s-5).
Sum identity: Sum_{d|n} a(n)*(n/d)^5 = 1 for all n>=1.
a(n) = a(rad(n)) with rad(n) = A007947(n), the squarefree kernel of n.
G.f.: Sum_{k>=1} mu(k)*k^5*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
EXAMPLE
a(2) = a(4) = a(8) = ... = 1 - 2^5 = -31.
a(4) = mu(1)*1^5 + mu(2)*2^5 + mu(4)*4^5 = 1 - 32 + 0 = -31.
Sum identity for n=4: a(1)*(4/1)^5 + a(2)*(4/2)^5 + a(4)*(4/4)^5 = 1024 - 31*32 - 31 = 1.
MATHEMATICA
a[n_] := Sum[ MoebiusMu[d]*d^5, {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 03 2012 *)
f[p_, e_] := (1-p^5); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
PROG
(PARI) for(n=1, 200, print1(sumdiv(n, d, moebius(d) * d^5), ", ")) \\ Indranil Ghosh, Mar 11 2017
(PARI) a(n) = sumdiv(n, d, moebius(d) * d^5); \\ Michel Marcus, Jan 14 2018
CROSSREFS
Cf. A023900, A046970, A063453, A189922, for k=-1..-4.
Sequence in context: A173832 A272162 A338893 * A059378 A024003 A258807
KEYWORD
sign,easy,mult
AUTHOR
Wolfdieter Lang, Jun 16 2011
STATUS
approved