login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189924
a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)).
2
1, 2, 5, 15, 49, 140, -64, -8540, -146124, -2124936, -30374136, -445116672, -6793958016, -108691150464, -1826654613120, -32257962443520, -598196854045440, -11635261535301120, -237044583523514880, -5050811716879104000
OFFSET
0,2
COMMENTS
This is the fourth (k=3) column sequence in triangle A094645 without leading zeros.
LINKS
FORMULA
a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)), with the unsigned Stirling1 numbers abs(Stirling1(n,k)) = A132393(n,k).
E.g.f.: (1/2)*(2-log(1-x)^2)/(1-x)^2 (from differentiating three times (1-x)*((-log(1-x))^3)/3!).
MATHEMATICA
Table[Abs[StirlingS1[n+2, 2]]-Abs[StirlingS1[n+2, 3]], {n, 0, 20}] (* Harvey P. Dale, May 21 2015 *)
PROG
(PARI) a(n)=abs(stirling(n+2, 2))-abs(stirling(n+2, 3)) \\ Charles R Greathouse IV, Jun 27 2011
(Magma) [Abs(StirlingFirst(n+2, 2)) - Abs(StirlingFirst(n+2, 3)): n in [0..30]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Cf. A081047 (column k=2).
Sequence in context: A149929 A337262 A149930 * A360233 A190908 A149931
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jun 21 2011
STATUS
approved