login
A189925
Expansion of theta_4/theta_3 in powers of q.
4
1, -4, 8, -16, 32, -56, 96, -160, 256, -404, 624, -944, 1408, -2072, 3008, -4320, 6144, -8648, 12072, -16720, 22976, -31360, 42528, -57312, 76800, -102364, 135728, -179104, 235264, -307672, 400704, -519808, 671744, -864960, 1109904
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Baker [1890] page 94 is equation (1): sqrt(cos theta) = [[...]] = 1 - 4q + 8q^2 -[[...]] where cos theta = k'. - Michael Somos, Dec 31 2023
REFERENCES
Arthur L. Baker, Elliptic Functions, John Wiley & Sons, NY, 1890.
LINKS
G. Berger, Relations between cusp forms on congruence and noncongruence groups, Proc. of the Amer. Math. Soc., vol. 128, (2000), 2869-2874. see p. 2870 equation (4).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^4 * eta(q^4)^2 / eta(q^2)^6 in powers of q.
Expansion of Jacobian elliptic function sqrt(k') in powers of q.
Expansion of phi(-q) / phi(q) = chi(-q)^2 / chi(q)^2 = psi(-q)^2 / psi(q)^2 = phi(-q)^2 / phi(-q^2)^2 = phi(-q^2)^2 / phi(q)^2 = chi(-q)^4 / chi(-q^2)^2 = chi(-q^2)^2 / chi(q)^4 = f(-q)^2 / f(q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ -4, 2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 * (u^2 + 1) - 2*u.
Unique solution to f(x^2)^(-2) = (f(x) + 1/f(x)) / 2 and f(0) = 1, f'(0) nonzero.
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A079006.
G.f.: theta_4 / theta_3 = (Sum_{k} (-x)^k^2)/(Sum_{k} x^k^2) = (Product_{k>0} ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2 / (1 - x^(4*k - 2)))^2.
Convolution inverse of A007096. a(n) = (-1)^n * A007096(n). a(2*n) = A014969(n). a(2*n + 1) = -4 * A093160(n). a(4*n) = A097243(n). a(4*n + 2) = 8*A022577(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n))/(2^(5/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
G.f.: exp(-4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019
EXAMPLE
G.f. = 1 - 4*q + 8*q^2 - 16*q^3 + 32*q^4 - 56*q^5 + 96*q^6 - 160*q^7 + 256*q^8 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^2 / (1+x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
With[{nmax = 50}, CoefficientList[Series[4 QPochhammer[-1, x^2]^2/QPochhammer[-1, x]^4, {x, 0, nmax}], x]] (* Jan Mangaldan, Jan 04 2017 *)
With[{nmax = 50}, CoefficientList[Series[EllipticTheta[4, 0, x]/EllipticTheta[3, 0, x], {x, 0, nmax}], x]] (* Jan Mangaldan, Jan 04 2017 *)
a[ n_] := SeriesCoefficient[(1 - InverseEllipticNomeQ[x])^(1/4), {x, 0, n}]; (* Michael Somos, Dec 31 2023 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^2 * eta(x^4 + A) / eta(x^2 + A)^3 )^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 01 2011
STATUS
approved