login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189928
c(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(Pi/5), t=cos(Pi/5), where [] denotes the floor function.
3
2, 5, 8, 10, 14, 17, 20, 22, 26, 29, 31, 34, 38, 41, 43, 46, 50, 53, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 96, 100, 103, 106, 108, 111, 115, 118, 120, 123, 127, 129, 132, 135, 139, 141, 144, 147, 151, 153, 156, 159, 161, 165, 168, 171, 173, 177, 180
OFFSET
1,1
COMMENTS
See A189926.
LINKS
FORMULA
A189926: a(n) = n + [n*sin(Pi/5)] + [n*cos(Pi/5)].
A189927: b(n) = n + [n*csc(Pi/5)] + [n*cot(Pi/5)].
A189928: c(n) = n + [n*sec(Pi/5)] + [n*tan(Pi/5)].
MATHEMATICA
r=1; s=Sin[Pi/5]; t=Cos[Pi/5];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A189926 *)
Table[b[n], {n, 1, 120}] (* A189927 *)
Table[c[n], {n, 1, 120}] (* A189928 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/cos(Pi/5)) + floor(n*tan(Pi/5)), ", ")) \\ G. C. Greubel, Jan 13 2018
(Magma) C<i> := ComplexField(); [n + Floor(n/Cos(Pi(C)/5)) + Floor(n*Tan(Pi(C)/5)): n in [1..100]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Sequence in context: A263831 A189457 A189362 * A309518 A169922 A157481
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2011
STATUS
approved