login
A189930
b(n) = n + [n*r/s] + [n*t/s]; r=1, s=sin(2pi/5), t=cos(2pi/5).
3
2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27, 30, 32, 34, 37, 39, 41, 44, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 77, 80, 82, 84, 87, 89, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 115, 118, 120, 122, 125, 127, 129, 132, 134, 136, 140, 142, 144, 147, 149, 151, 154, 156, 158, 161, 163, 165, 168, 170, 172, 175, 177, 179, 182
OFFSET
1,1
COMMENTS
See A189929.
LINKS
FORMULA
A189929: a(n) = n + [n*sin(2*pi/5)] + [n*cos(2*pi/5)].
A189930: b(n) = n + [n*csc(2*pi/5)] + [n*cot(2*pi/5)].
A189931: c(n) = n + [n*sec(2*pi/5)] + [n*tan(2*pi/5)].
MATHEMATICA
r=1; s=Sin[2Pi/5]; t=Cos[2Pi/5];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (*A189929*)
Table[b[n], {n, 1, 120}] (*A189930*)
Table[c[n], {n, 1, 120}] (*A189931*)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/sin(2*Pi/5)) + floor(n/tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Jan 13 2018
(Magma) C<i> := ComplexField(); [n + Floor(n/Sin(2*Pi(C)/5)) + Floor(n/Tan(2*Pi(C)/5)): n in [1..100]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Sequence in context: A061785 A330118 A047292 * A184627 A203988 A160813
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2011
STATUS
approved