login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036313
Composite numbers whose prime factors contain no digits other than 2 and 9.
2
4, 8, 16, 32, 58, 64, 116, 128, 232, 256, 458, 464, 512, 841, 916, 928, 1024, 1682, 1832, 1856, 1858, 2048, 3364, 3664, 3712, 3716, 4096, 5998, 6641, 6728, 7328, 7424, 7432, 8192, 11996, 13282, 13456, 14656, 14848, 14864, 16384, 19858, 23992, 24389
OFFSET
1,1
COMMENTS
All terms are a product of at least two terms of A020460. - David A. Corneth, Oct 09 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 3266 terms from Robert Israel)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A020460} (p/(p - 1)) - Sum_{p in A020460} 1/p - 1 = 0.5433646773... . - Amiram Eldar, May 18 2022
MAPLE
S[1]:= [2, 9]:
for d from 2 to 5 do S[d]:= map(t -> (10*t+2, 10*t+9), S[d-1]) od:
P29:= select(isprime, map(op, [seq(S[i], i=1..5)])):
N:= 10^5:
R:= {1}:
for p in P29 do
R:= map(t -> seq(t*p^j, j=0..floor(log[p](N/t))), R)
od:
R:= R minus convert(P29, set) minus {1}:
sort(convert(R, list)); # Robert Israel, Jan 17 2020
MATHEMATICA
pf29Q[n_]:=Module[{pfs=Union[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[1]]]]}, MatchQ[pfs, {2}]||MatchQ[pfs, {9} ]||MatchQ[pfs, {2, 9}]]; nn=25000; Select[Complement[Range[nn], Prime[ Range[ PrimePi[nn]]]], pf29Q] (* Harvey P. Dale, Apr 23 2012 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Patrick De Geest, Dec 15 1998
STATUS
approved