login
A347089
a(n) = gcd(A055155(n), d(n)), where A055155(n) = Sum_{d|n} gcd(d, n/d) and d(n) gives the number of divisors of n.
2
1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 5, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 10, 3, 2, 4, 2, 2, 8, 4, 4, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 6, 2, 4, 2, 2, 4, 8, 2, 10, 1, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 2, 6, 2, 1, 2, 8, 2, 4, 8
OFFSET
1,2
LINKS
FORMULA
a(n) = gcd(A000005(n), A055155(n)).
a(n) = gcd(A000005(n), A347088(n)) = gcd(A055155(n), A347088(n)).
PROG
(PARI)
A055155(n) = sumdiv(n, d, gcd(d, n/d)); \\ From A055155
A347089(n) = gcd(A055155(n), numdiv(n));
(Python)
from sympy import gcd, divisors, divisor_count
def A347089(n): return gcd(divisor_count(n), sum(gcd(d, n//d) for d in divisors(n, generator=True))) # Chai Wah Wu, Aug 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 17 2021
STATUS
approved