login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347092
Dirichlet inverse of A322577, which is the convolution of Dedekind psi with Euler phi.
3
1, -4, -6, 5, -10, 24, -14, -4, 10, 40, -22, -30, -26, 56, 60, 5, -34, -40, -38, -50, 84, 88, -46, 24, 26, 104, -6, -70, -58, -240, -62, -4, 132, 136, 140, 50, -74, 152, 156, 40, -82, -336, -86, -110, -100, 184, -94, -30, 50, -104, 204, -130, -106, 24, 220, 56, 228, 232, -118, 300, -122, 248, -140, 5, 260, -528, -134
OFFSET
1,2
COMMENTS
Multiplicative because A322577 is.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A322577(n/d) * a(d).
a(n) = A347093(n) - A322577(n).
From Sebastian Karlsson, Oct 29 2021: (Start)
Dirichlet g.f.: zeta(2*s)/zeta(s-1)^2.
a(n) = Sum_{d|n} A323363(n/d)*A023900(d).
Multiplicative with a(p^e) = 1 + p^2 if e is even, -2*p if e is odd. (End)
MATHEMATICA
f[p_, e_] := If[EvenQ[e], p^2 + 1, -2*p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)
PROG
(PARI)
up_to = 16384;
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A322577(n) = sumdiv(n, d, A001615(n/d)*eulerphi(d));
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v347092 = DirInverseCorrect(vector(up_to, n, A322577(n)));
A347092(n) = v347092[n];
(PARI) A347092(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]%2, -2*f[i, 1], 1+(f[i, 1]^2))); }; \\ (after Sebastian Karlsson's multiplicative formula) - Antti Karttunen, Nov 11 2021
(Haskell)
import Math.NumberTheory.Primes
a n = product . map (\(p, e) -> if even e then 1 + unPrime p^2 else -2*unPrime p) . factorise $ n -- Sebastian Karlsson, Oct 29 2021
(Python)
from sympy import factorint, prod
def f(p, e): return 1 + p**2 if e%2 == 0 else -2*p
def a(n):
factors = factorint(n)
return prod(f(p, factors[p]) for p in factors) # Sebastian Karlsson, Oct 29 2021
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Antti Karttunen, Aug 18 2021
STATUS
approved