login
A347094
Sum of A038040 (convolution of sigma with Euler phi) and its Dirichlet inverse.
4
2, 0, 0, 16, 0, 48, 0, 32, 36, 80, 0, 48, 0, 112, 120, 80, 0, 72, 0, 80, 168, 176, 0, 192, 100, 208, 108, 112, 0, 0, 0, 192, 264, 272, 280, 360, 0, 304, 312, 320, 0, 0, 0, 176, 180, 368, 0, 480, 196, 200, 408, 208, 0, 432, 440, 448, 456, 464, 0, 960, 0, 496, 252, 448, 520, 0, 0, 272, 552, 0, 0, 864, 0, 592, 300, 304, 616
OFFSET
1,1
COMMENTS
No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.
LINKS
FORMULA
a(n) = A038040(n) + A328722(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A038040(d) * A328722(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A038040(A030229(n)).
PROG
(PARI)
up_to = 16384;
A038040(n) = (n*numdiv(n));
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v328722 = DirInverseCorrect(vector(up_to, n, A038040(n)));
A328722(n) = v328722[n];
A347094(n) = (A038040(n)+A328722(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2021
STATUS
approved