login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347095
Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.
1
2, 0, 0, 9, 0, 30, 0, 21, 25, 54, 0, 35, 0, 78, 90, 49, 0, 51, 0, 63, 130, 126, 0, 95, 81, 150, 85, 91, 0, 0, 0, 113, 210, 198, 234, 172, 0, 222, 250, 171, 0, 0, 0, 147, 153, 270, 0, 235, 169, 147, 330, 175, 0, 231, 378, 247, 370, 342, 0, 405, 0, 366, 221, 257, 450, 0, 0, 231, 450, 0, 0, 424, 0, 438, 245, 259, 546
OFFSET
1,1
COMMENTS
No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.
LINKS
FORMULA
a(n) = A018804(n) + A101035(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A018804(d) * A101035(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).
PROG
(PARI)
up_to = 16384;
A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v101035 = DirInverseCorrect(vector(up_to, n, A018804(n)));
A101035(n) = v101035[n];
A347095(n) = (A018804(n)+A101035(n));
CROSSREFS
Cf. also A347094.
Sequence in context: A347085 A347091 A347229 * A346255 A346480 A323399
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2021
STATUS
approved