login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347093
Sum of A322577 (convolution of Dedekind psi with Euler phi) and its Dirichlet inverse.
5
2, 0, 0, 16, 0, 48, 0, 24, 36, 80, 0, 36, 0, 112, 120, 73, 0, 64, 0, 60, 168, 176, 0, 192, 100, 208, 96, 84, 0, 0, 0, 156, 264, 272, 280, 336, 0, 304, 312, 320, 0, 0, 0, 132, 160, 368, 0, 378, 196, 192, 408, 156, 0, 432, 440, 448, 456, 464, 0, 960, 0, 496, 224, 373, 520, 0, 0, 204, 552, 0, 0, 688, 0, 592, 288, 228, 616
OFFSET
1,1
COMMENTS
No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.
LINKS
FORMULA
a(n) = A322577(n) + A347092(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A322577(d) * A347092(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A322577(A030229(n)).
PROG
(PARI)
up_to = 16384;
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A322577(n) = sumdiv(n, d, A001615(n/d)*eulerphi(d));
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v347092 = DirInverseCorrect(vector(up_to, n, A322577(n)));
A347092(n) = v347092[n];
A347093(n) = (A322577(n)+A347092(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2021
STATUS
approved