login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231246
T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, no adjacent elements equal, and upper left element zero
13
0, 0, 0, 0, 2, 0, 0, 14, 6, 0, 0, 44, 78, 20, 0, 0, 146, 464, 552, 68, 0, 0, 572, 3090, 5992, 3820, 230, 0, 0, 2258, 22460, 76264, 76136, 26658, 778, 0, 0, 8660, 162766, 1081934, 1872136, 968824, 185074, 2632, 0, 0, 33026, 1169472, 15270416, 52280836, 46019438
OFFSET
1,5
COMMENTS
Table starts
.0....0.......0.........0...........0.............0................0
.0....2......14........44.........146...........572.............2258
.0....6......78.......464........3090.........22460...........162766
.0...20.....552......5992.......76264.......1081934.........15270416
.0...68....3820.....76136.....1872136......52280836.......1450042214
.0..230...26658....968824....46019438....2532190370.....138246711032
.0..778..185074..12322784..1130422470..122516675112...13176773912306
.0.2632.1287036.156753000.27772974680.5929632659798.1256579264497704
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 3*a(n-1) +a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) +16*a(n-2) +26*a(n-3) +37*a(n-4) +6*a(n-5)
k=4: a(n) = 10*a(n-1) +30*a(n-2) +53*a(n-3) +71*a(n-4) -a(n-5) +6*a(n-6) -8*a(n-7)
k=5: [order 19]
k=6: [order 74]
Empirical for row n:
n=2: a(n) = 4*a(n-1) -3*a(n-2) +8*a(n-3) +4*a(n-4) for n>5
n=3: [order 7] for n>8
n=4: [order 22] for n>23
n=5: [order 62] for n>63
EXAMPLE
Some solutions for n=2 k=4
..0..3..0..1....0..3..0..3....0..1..0..3....0..1..2..3....0..1..0..1
..2..1..2..3....2..1..0..3....2..3..2..1....0..1..0..1....0..3..2..1
CROSSREFS
Column 2 is A231057
Sequence in context: A193294 A231049 A231080 * A216991 A191418 A347093
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 06 2013
STATUS
approved