Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 06 2013 05:41:22
%S 0,0,0,0,2,0,0,14,6,0,0,44,78,20,0,0,146,464,552,68,0,0,572,3090,5992,
%T 3820,230,0,0,2258,22460,76264,76136,26658,778,0,0,8660,162766,
%U 1081934,1872136,968824,185074,2632,0,0,33026,1169472,15270416,52280836,46019438
%N T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, no adjacent elements equal, and upper left element zero
%C Table starts
%C .0....0.......0.........0...........0.............0................0
%C .0....2......14........44.........146...........572.............2258
%C .0....6......78.......464........3090.........22460...........162766
%C .0...20.....552......5992.......76264.......1081934.........15270416
%C .0...68....3820.....76136.....1872136......52280836.......1450042214
%C .0..230...26658....968824....46019438....2532190370.....138246711032
%C .0..778..185074..12322784..1130422470..122516675112...13176773912306
%C .0.2632.1287036.156753000.27772974680.5929632659798.1256579264497704
%H R. H. Hardin, <a href="/A231246/b231246.txt">Table of n, a(n) for n = 1..161</a>
%F Empirical for column k:
%F k=2: a(n) = 3*a(n-1) +a(n-2) +a(n-3)
%F k=3: a(n) = 4*a(n-1) +16*a(n-2) +26*a(n-3) +37*a(n-4) +6*a(n-5)
%F k=4: a(n) = 10*a(n-1) +30*a(n-2) +53*a(n-3) +71*a(n-4) -a(n-5) +6*a(n-6) -8*a(n-7)
%F k=5: [order 19]
%F k=6: [order 74]
%F Empirical for row n:
%F n=2: a(n) = 4*a(n-1) -3*a(n-2) +8*a(n-3) +4*a(n-4) for n>5
%F n=3: [order 7] for n>8
%F n=4: [order 22] for n>23
%F n=5: [order 62] for n>63
%e Some solutions for n=2 k=4
%e ..0..3..0..1....0..3..0..3....0..1..0..3....0..1..2..3....0..1..0..1
%e ..2..1..2..3....2..1..0..3....2..3..2..1....0..1..0..1....0..3..2..1
%Y Column 2 is A231057
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Nov 06 2013