login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191418
G.f. S(x) satisfies: C(C(x)) - S(S(x)) = x where C(x) = x + 2*x^2*S(x).
4
0, 2, 0, 0, 16, 0, 0, 192, 0, 0, 3456, 0, 0, 101376, 0, 0, 4530176, 0, 0, 268566528, 0, 0, 19364544512, 0, 0, 1625159761920, 0, 0, 154906103119872, 0, 0, 16501222521438208, 0, 0, 1941212535558504448, 0, 0, 249847697842041257984, 0, 0, 34914299540455999668224
OFFSET
1,2
COMMENTS
C(x) is the g.f. of A191417, and C(C(x)) is the g.f. of A191419.
FORMULA
Functions C(x) and S(x) satisfy: C'(C(x))*C'(x) - S'(S(x))*S'(x) = 1.
EXAMPLE
G.f. S(x) = 2*x^2 + 16*x^5 + 192*x^8 + 3456*x^11 + 101376*x^14 +...
Related expansions.
C(x) = x + 4*x^4 + 32*x^7 + 384*x^10 + 6912*x^13 + 202752*x^16 +...
C(C(x)) = x + 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
S(S(x)) = 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
PROG
(PARI) {a(n)=local(C=x, S=2*x^2, Sv=[0, 2]);
for(i=0, n\3, Sv=concat(Sv, [0, 0, 0]); S=x*Ser(Sv); C=x+2*x^2*S;
Sv[#Sv]=polcoeff((subst(C, x, C)-subst(S, x, S))/4, #Sv+2); ); polcoeff(S, n)}
CROSSREFS
Cf. A191417 (C(x)), A191419 (C(C(x))).
Sequence in context: A231080 A231246 A216991 * A347093 A347094 A120556
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2011
STATUS
approved