login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191417 G.f. C(x) satisfies: C(C(x)) - S(S(x)) = x where C(x) = x + 2*x^2*S(x). 4
1, 0, 0, 4, 0, 0, 32, 0, 0, 384, 0, 0, 6912, 0, 0, 202752, 0, 0, 9060352, 0, 0, 537133056, 0, 0, 38729089024, 0, 0, 3250319523840, 0, 0, 309812206239744, 0, 0, 33002445042876416, 0, 0, 3882425071117008896, 0, 0, 499695395684082515968, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
S(x) is the g.f. of A191418, and C(C(x)) is the g.f. of A191419.
LINKS
FORMULA
Functions C(x) and S(x) satisfy: C'(C(x))*C'(x) - S'(S(x))*S'(x) = 1.
EXAMPLE
G.f. C(x) = x + 4*x^4 + 32*x^7 + 384*x^10 + 6912*x^13 + 202752*x^16 +...
Related expansions.
S(x) = 2*x^2 + 16*x^5 + 192*x^8 + 3456*x^11 + 101376*x^14 +...
C(C(x)) = x + 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
S(S(x)) = 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
PROG
(PARI) {a(n)=local(C=x, S=2*x^2, Sv=[0, 2]);
for(i=0, n\3, Sv=concat(Sv, [0, 0, 0]); S=x*Ser(Sv); C=x+2*x^2*S;
Sv[#Sv]=polcoeff((subst(C, x, C)-subst(S, x, S))/4, #Sv+2); ); polcoeff(C, n)}
CROSSREFS
Cf. A191418 (S(x)), A191419 (C(C(x))).
Sequence in context: A307186 A060784 A181204 * A307050 A223179 A278272
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 17:12 EDT 2024. Contains 371845 sequences. (Running on oeis4.)