login
A060784
Number of double tangents of order n.
1
0, 4, 0, 0, 28, 120, 324, 700, 1320, 2268, 3640, 5544, 8100, 11440, 15708, 21060, 27664, 35700, 45360, 56848, 70380, 86184, 104500, 125580, 149688, 177100, 208104, 243000, 282100, 325728, 374220, 427924, 487200, 552420, 623968
OFFSET
0,2
REFERENCES
H. Brocard and T. Lemoyne: Courbes géométriques remarquables (courbes spéciales) Planes et Gauches. Tome I, Paris: Albert Blanchard, 1967 [First publ. 1919]; see p. 375.
C.G.J. Jacobi, (Bericht ueber die zur Bekanntmachung geeigneten), Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin, 1850, p. 209, Jun 13, 1850. [Wolfdieter Lang, Oct 09 2001]
LINKS
D. Ayala and R. Cavalieri, Counting bitangents with stable maps, arXiv:math/0505139 [math.AG], 2005.
FORMULA
a(n) = n*(n-2)*(n-3)*(n+3)/2.
From Colin Barker, Mar 16 2020: (Start)
G.f.: 4*x*(1 - 5*x + 10*x^2 - 3*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 0, 0, 28}, 40] (* Harvey P. Dale, Jul 25 2024 *)
PROG
(PARI) a(n)={n*(n - 2)*(n - 3)*(n + 3)/2} \\ Harry J. Smith, Jul 11 2009
(PARI) concat(0, Vec(4*x*(1 - 5*x + 10*x^2 - 3*x^3) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Mar 16 2020
CROSSREFS
Sequence in context: A232357 A196302 A307186 * A181204 A191417 A307050
KEYWORD
nonn,easy
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 28 2001
STATUS
approved