

A196302


Smallest highly composite number that is not a divisor of nth highly composite number or 0 if no such number exists.


0



0, 0, 0, 4, 0, 0, 24, 36, 24, 36, 24, 36, 48, 0, 36, 24, 36, 48, 0, 48, 7560, 10080, 7560, 7560, 48, 10080, 7560, 7560, 48, 7560, 10080, 7560, 7560, 20160, 10080, 7560, 25200, 7560, 48, 7560, 10080, 7560, 7560, 20160, 10080, 7560, 25200, 10080, 7560, 25200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(19) is the last 0 in this sequence


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

a(4) = 4 because 6, the fourth highly composite number, is a multiple of 1 and 2 but not of 4. a(5) = 0 because 12 is a multiple of all of 1, 2, 4, 6, and 12.


MATHEMATICA

(* let hc contain consecutive highly composite numbers starting with 1 *) Table[i = 1; While[i < n && Mod[hc[[n]], hc[[i]]] == 0, i++]; If[i == n, 0, hc[[i]]], {n, Length[hc]}] (* T. D. Noe, Sep 30 2011 *)


CROSSREFS

Cf A002182.
Sequence in context: A286216 A280727 A232357 * A307186 A060784 A181204
Adjacent sequences: A196299 A196300 A196301 * A196303 A196304 A196305


KEYWORD

nonn


AUTHOR

J. Lowell, Sep 30 2011


STATUS

approved



