login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191419
G.f. C(C(x)) where C(x) is the g.f. of A191417.
4
1, 0, 0, 8, 0, 0, 128, 0, 0, 2560, 0, 0, 60416, 0, 0, 1728512, 0, 0, 63438848, 0, 0, 3096477696, 0, 0, 196811685888, 0, 0, 15408280109056, 0, 0, 1413600665141248, 0, 0, 147160243434946560, 0, 0, 17047411713181220864, 0, 0, 2169625122325921792000
OFFSET
1,4
COMMENTS
Functions C(x) and S(x) satisfy: C(C(x)) - S(S(x)) = x and C(x) = x + 2*x^2*S(x), where C(x) is the g.f. of A191417 and S(x) is the g.f. of A191418.
EXAMPLE
G.f. C(C(x)) = x + 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
Related expansions.
C(x) = x + 4*x^4 + 32*x^7 + 384*x^10 + 6912*x^13 + 202752*x^16 +...
S(x) = 2*x^2 + 16*x^5 + 192*x^8 + 3456*x^11 + 101376*x^14 +...
S(S(x)) = 8*x^4 + 128*x^7 + 2560*x^10 + 60416*x^13 + 1728512*x^16 +...
PROG
(PARI) {a(n)=local(C=x, S=2*x^2, Sv=[0, 2]);
for(i=0, n\3, Sv=concat(Sv, [0, 0, 0]); S=x*Ser(Sv); C=x+2*x^2*S;
Sv[#Sv]=polcoeff((subst(C, x, C)-subst(S, x, S))/4, #Sv+2); ); polcoeff(subst(C, x, C), n)}
CROSSREFS
Cf. A191417 (C(x)), A191418 (S(x)).
Sequence in context: A371665 A169696 A192059 * A054373 A061847 A307224
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2011
STATUS
approved