login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191422
Expansion of e.g.f. (1 + x + x^2)^x.
2
1, 0, 2, 3, -4, 90, -126, -840, 21104, -137592, -88920, 15741000, -197234808, 535289040, 25582565904, -522317151720, 3223601137920, 75590725210560, -2388641226278976, 23718732310200960, 361277667059425920, -17515819241263405440, 246424647059545933440
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1 + x + x^2)^x.
a(n) = n!*Sum_{m=1..n} Sum_{k=0..n-2*m} Stirling1(m+k, m)*binomial(m+k, n-2*m-k)/(m+k)! for n > 0, a(0)=1.
MAPLE
S:= series((1+x+x^2)^x, x, 41):
seq(coeff(S, x, k)*k!, k=0..40); # Robert Israel, Apr 28 2021
PROG
(Maxima)
a(n):=if n=0 then 1 else (sum(sum((stirling1(m+k, m)*binomial(m+k, n-2*m-k))/(m+k)!, k, 0, n-2*m), m, 1, n))*n!;
(PARI) my(x='x+O('x^30)); Vec(serlaplace((1+x+x^2)^x)) \\ Michel Marcus, Apr 28 2021
CROSSREFS
Sequence in context: A037395 A009496 A263281 * A008405 A037431 A262526
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 02 2011
STATUS
approved