

A262526


Any number greater than a(n) can conjecturally be represented in more ways by sums of three base10 palindromes than a(n).


5



1, 2, 3, 4, 98, 120, 142, 164, 172, 192, 212, 223, 2082, 2102, 2203, 2213, 130282, 130992, 131392, 131492, 131592, 131742, 131752, 131792, 131902, 132002, 132102, 132192, 132202, 132482, 132502, 132602, 132662, 132672, 132752, 132782, 132802
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The corresponding representation counts are provided in A262527. Positions of latest occurrence of increasing minima of representation counts in A261132. The sequence provides numerical evidence for the validity of the conjecture that every number is the sum of three palindromes.


LINKS

Hugo Pfoertner, Table of n, a(n) for n = 1..1072


EXAMPLE

a(5)=98 because A261132(k)>5 for all k>98.
a(7)=142 because A261132(k)>A262527(7)=8 for all k>142.


CROSSREFS

Cf. A262527, A261132, A002113, A262524, A262525.
See A261422, A262544, A262545 for another approach.
Sequence in context: A191422 A008405 A037431 * A171564 A244541 A244542
Adjacent sequences: A262523 A262524 A262525 * A262527 A262528 A262529


KEYWORD

nonn,base


AUTHOR

Hugo Pfoertner, Sep 25 2015


STATUS

approved



