login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346480
Sum of A250469 and its Dirichlet inverse.
4
2, 0, 0, 9, 0, 30, 0, 27, 25, 42, 0, 45, 0, 66, 70, 45, 0, 75, 0, 99, 110, 78, 0, 3, 49, 102, 125, 135, 0, 60, 0, 81, 130, 114, 154, -39, 0, 138, 170, 15, 0, 60, 0, 261, 175, 174, 0, 117, 121, 231, 190, 297, 0, -225, 182, 3, 230, 186, 0, -381, 0, 222, 275, 189, 238, 360, 0, 423, 290, 216, 0, 381, 0, 246, 245, 459
OFFSET
1,1
FORMULA
a(n) = A250469(n) + A346479(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A250469(d) * A346479(n/d).
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v346479 = DirInverseCorrect(vector(up_to, n, A250469(n)));
A346479(n) = v346479[n];
A346480(n) = (A250469(n)+A346479(n));
(PARI) A346480(n) = if(1==n, 2, -sumdiv(n, d, if((1==d)||n==d, 0, A250469(d)*A346479(n/d)))); \\ (Demonstrates the convolution formula).
CROSSREFS
Cf. also A346478.
Sequence in context: A347229 A347095 A346255 * A323399 A246714 A246708
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 30 2021
STATUS
approved