OFFSET
1,4
COMMENTS
Conjecture: a(n)>0 for all n>0. Moreover, if n>0 is different from 74, 138, 166, 542, then n+k^3 is practical for some 0<=k<=sqrt(n)*log(n); if n is not equal to 102, then n+k and n+k^3 are both practical for some k=0,...,n-1.
Zhi-Wei Sun also conjectured that any integer n>1 can be written as x^3+y (x,y>0) with 2x and 4xy both practical.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(22)=1 since 22+2^3=30 is practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[pr[n+k^3]==True, 1, 0], {k, 0, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 28 2013
STATUS
approved