login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210533
Number of ways to write 2n = x+y (x,y>0) with x-1 and x+1 both prime, and x and x^3+y^3 both practical.
4
0, 0, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 1, 5, 3, 5, 5, 5, 3, 6, 5, 6, 6, 6, 3, 6, 2, 7, 7, 6, 6, 7, 1, 6, 8, 8, 3, 8, 4, 6, 8, 7, 4, 8, 4, 8, 8, 6, 5, 8, 5, 6, 9, 7, 3, 9, 6, 8, 9, 8, 5, 9, 3, 7, 9, 7, 5, 9, 2, 7, 9, 7, 4, 10, 4, 8, 10, 8, 5, 10, 8, 7, 10, 10, 6, 10, 4, 9, 11, 8, 7, 11, 6, 11, 12, 11
OFFSET
1,4
COMMENTS
Conjecture: a(n)>0 for all n>2. Moreover, for each m=2,3,4,... any sufficiently large even integer can be written as x+y (x,y>0) with x-1 and x+1 both prime, and x and x^m+y^m both practical.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(17)=1 since 2*17=12+22 with 11 and 13 both prime, and 12 and 12^3+22^3=12376 both practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[PrimeQ[2k-1]==True&&PrimeQ[2k+1]==True&&pr[2k]==True&&pr[(2k)^3+(2n-2k)^3]==True, 1, 0], {k, 1, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 28 2013
STATUS
approved