login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085364
a(0)=1, for n>0: a(n) = 6*13^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
4
1, 6, 60, 654, 7458, 87378, 1042152, 12587730, 153479508, 1885010946, 23285957604, 289018502682, 3601315495050, 45023019250398, 564465885846216, 7094214579174558, 89351097367355826, 1127492973620753010
OFFSET
0,2
COMMENTS
From G. C. Greubel, May 23 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=3. (End)
LINKS
FORMULA
G.f.: sqrt((1-x)/(1-13*x))
Sum_{i=0..n} Sum_{j=0..i} a(j)*a(i-j) = 13^n.
D-finite with recurrence: n*a(n) = 2*(7*n-4)*a(n-1) - 13*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 2*sqrt(3)*13^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(0) = 1; a(n) = (6/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
MAPLE
seq(coeff(series( sqrt((1-x)/(1-13*x)) , x, n+1), x, n), n = 0..30); # G. C. Greubel, May 23 2020
MATHEMATICA
CoefficientList[Series[Sqrt[(1-x)/(1-13x)], {x, 0, 25}], x]
PROG
(PARI) my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-13*x))) \\ Joerg Arndt, May 10 2013
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-13*x)) )); // G. C. Greubel, May 23 2020
(Sage)
def A085362_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-13*x)) ).list()
A085362_list(30) # G. C. Greubel, May 23 2020
CROSSREFS
Cf. A001022 (13^n), A085362, A085363.
Sequence in context: A186672 A295503 A106259 * A228484 A232969 A232246
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003
STATUS
approved