login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228484
a(n) = 2^n*(3*n)!/(n!*(2*n)!).
4
1, 6, 60, 672, 7920, 96096, 1188096, 14883840, 188280576, 2399654400, 30766095360, 396363202560, 5126871859200, 66538909237248, 866061993246720, 11300615801536512, 147773778404769792, 1936073567335219200, 25408660721789829120, 333963051307735449600
OFFSET
0,2
COMMENTS
Oblique diagonal of the Pell-Jacobsthal triangle A013609. Its mirror diagonal is A006588.
LINKS
FORMULA
a(n) = 2^n*A005809(n).
a(n) = A013609(3*n, n).
a(n) = A006588(n)/2^n.
a(n) = (2*n+1)*A153231(n).
Asymptotic approximation of a(n) ~ C*(13.5)^n/sqrt(n) with C = (1/2)*sqrt(3/Pi) = A137209.
Sum_{n>=0} 1/a(n) = (11*Pi - 12*log(2) + 270)/250. - Amiram Eldar, Mar 06 2022
MAPLE
a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);
MATHEMATICA
Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2013 *)
PROG
(Magma) [2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Aug 24 2013
(PARI) a(n) = 2^n*binomial(3*n, 2*n); \\ Michel Marcus, Mar 06 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Aug 22 2013
EXTENSIONS
More terms from Vincenzo Librandi, Aug 24 2013
STATUS
approved