login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228485
Odd prime powers p^k such that p is congruent to 2 or 5 mod 9.
1
5, 11, 23, 25, 29, 41, 47, 59, 83, 101, 113, 121, 125, 131, 137, 149, 167, 173, 191, 227, 239, 257, 263, 281, 293, 311, 317, 347, 353, 383, 389, 401, 419, 443, 461, 479, 491, 509, 529, 563, 569, 587, 599, 617, 625, 641, 653, 659, 677, 743, 761, 797, 821, 839
OFFSET
1,1
COMMENTS
For any n, the equation x^3 + y^3 = a(n)*z^3 is not solvable in nonzero integers. Therefore, these numbers do not occur in A020898.
REFERENCES
Henri Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer, 2007, pp. 374-375.
PROG
(PARI) forstep(n=3, 839, 2, p=isprimepower(n); if(p>0, m=Mod(round(n^(1/p)), 9); if(m==2||m==5, print1(n, ", "))));
CROSSREFS
Cf. A020898, A025473. Subsequence of A061345.
Sequence in context: A189978 A192761 A152533 * A161896 A317909 A304372
KEYWORD
nonn
AUTHOR
STATUS
approved