login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n*(3*n)!/(n!*(2*n)!).
4

%I #26 Jul 25 2024 08:46:03

%S 1,6,60,672,7920,96096,1188096,14883840,188280576,2399654400,

%T 30766095360,396363202560,5126871859200,66538909237248,

%U 866061993246720,11300615801536512,147773778404769792,1936073567335219200,25408660721789829120,333963051307735449600

%N a(n) = 2^n*(3*n)!/(n!*(2*n)!).

%C Oblique diagonal of the Pell-Jacobsthal triangle A013609. Its mirror diagonal is A006588.

%H Vincenzo Librandi, <a href="/A228484/b228484.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = 2^n*A005809(n).

%F a(n) = A013609(3*n, n).

%F a(n) = A006588(n)/2^n.

%F a(n) = (2*n+1)*A153231(n).

%F Asymptotic approximation of a(n) ~ C*(13.5)^n/sqrt(n) with C = (1/2)*sqrt(3/Pi) = A137209.

%F Sum_{n>=0} 1/a(n) = (11*Pi - 12*log(2) + 270)/250. - _Amiram Eldar_, Mar 06 2022

%p a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);

%t Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* _Vincenzo Librandi_, Aug 24 2013 *)

%o (Magma) [2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // _Vincenzo Librandi_, Aug 24 2013

%o (PARI) a(n) = 2^n*binomial(3*n, 2*n); \\ _Michel Marcus_, Mar 06 2022

%Y Cf. A005809, A013609, A006588, A137209.

%K nonn,easy

%O 0,2

%A _Johannes W. Meijer_, Aug 22 2013

%E More terms from _Vincenzo Librandi_, Aug 24 2013