OFFSET
0,2
COMMENTS
a(n) is also the number of rooted generalized noncrossing trees on n+1 vertices.
The series reversion of y = x +2*x^3 is x = y -2*y^3 +12*y^5 -96*y^7 +880*y^9 -8736*y^11 +... - R. J. Mathar, Sep 29 2012
Lattice paths in the 1st quadrant from (0,0) to (3n,0) using steps D(1,-1) and two types of U(1,2). - David Scambler, Jun 22 2013
From Torsten Muetze, May 08 2024: (Start)
a(n) also counts ternary trees with n nodes that are colored red or blue.
a(n) also counts triangulations of a convex (2n+2)-gon whose points are colored red and blue alternatingly, and that do not have monochromatic triangles (i.e., every triangle has at least one red point and at least one blue point). (End)
REFERENCES
Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..889
CombOS - Combinatorial Object Server, Generate k-ary trees and dissections
Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, arXiv:math/0407280 [math.CO], 2004.
Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
FORMULA
a(n) = 2^n*A001764(n). - R. J. Mathar, Oct 06 2012
D-finite with recurrence n*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012
a(n) = (n+1)*A000309(n). - Johannes W. Meijer, Aug 22 2013
G.f.: sqrt(2)/sqrt(3*x)*sin(1/3*asin(sqrt(27*x/2))). - Vladimir Kruchinin, Sep 08 2015
E.g.f.: Hypergeometric2F2(1/3,2/3; 1,3/2; 27*x/2). - Ilya Gutkovskiy, Nov 23 2017
MATHEMATICA
Table[2^n Binomial[3n, n]/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Sep 08 2015 *)
PROG
(Magma) [2^n*Binomial(3*n, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2015
(PARI) a(n) = 2^n*binomial(3*n, n)/(2*n+1); \\ Altug Alkan, Sep 24 2018
(SageMath) [2^n*binomial(3*n, n)/(2*n+1) for n in range(31)] # G. C. Greubel, Mar 08 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yidong Sun (sydmath(AT)yahoo.com.cn), Dec 21 2008
EXTENSIONS
More terms from N. J. A. Sloane, Dec 21 2008
STATUS
approved