login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014297
a(n) = n! * C(n+2, 2) * 2^(n+1).
2
2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000, 15944266600786427904000, 637770664031457116160000
OFFSET
0,1
COMMENTS
Partition the set {1,2,...,n+2} into an even number of subsets. Arrange (linearly order) the elements within each subset and then arrange the subsets. - Geoffrey Critzer, Mar 03 2010
LINKS
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
FORMULA
a(n) = Sum_{k=0..n} (n+2)!*C(n,k).
Prepend the sequence with 1,0, then e.g.f. is (1-x)^2/(1-2*x). - Geoffrey Critzer, Mar 03 2010
E.g.f.: 2/(1-2*x)^3. - R. J. Mathar, Nov 27 2011
a(n) = 2*A051578(n). - R. J. Mathar, Apr 26 2017
a(n) = (n+2)! * 2^n. - Joerg Arndt, May 05 2019
From Amiram Eldar, Jul 04 2020: (Start)
Sum_{n>=0} 1/a(n) = 4*sqrt(e) - 6.
Sum_{n>=0} (-1)^n/a(n) = 4/sqrt(e) - 2. (End)
MAPLE
seq(count(Permutation(n+1))*count(Composition(n)), n=1..17); # Zerinvary Lajos, Oct 16 2006
MATHEMATICA
Drop[CoefficientList[Series[(1-x)^2/(1-2x), {x, 0, 20}], x]* Table[n!, {n, 0, 20}], 2] (* Geoffrey Critzer, Mar 03 2010 *)
Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[2/(1 - 2*x)^3, {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
Table[n!Binomial[n+2, 2]2^(n+1), {n, 0, 30}] (* Harvey P. Dale, Dec 27 2022 *)
PROG
(PARI) a(n) = (n+2)!*2^n; \\ Joerg Arndt, May 05 2019
(Magma) [2^n*Factorial(n+2): n in [0..20]]; // G. C. Greubel, May 05 2019
(Sage) [2^n*factorial(n+2) for n in (0..20)] # G. C. Greubel, May 05 2019
(GAP) List([0..20], n-> 2^n*Factorial(n+2)) # G. C. Greubel, May 05 2019
CROSSREFS
Essentially the same as A052564.
Cf. A088312.
Sequence in context: A153231 A365282 A052564 * A193425 A206855 A219119
KEYWORD
nonn,easy
STATUS
approved