login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014298 a(n) = 2^n * (3n)! / (2n+1)!. 1
1, 2, 24, 576, 21120, 1048320, 65802240, 5000970240, 446557224960, 45830873088000, 5316381278208000, 687893507997696000, 98231192942070988800, 15345895252950201139200, 2603510504983275503616000, 476694375041453927694336000, 93692112621783944697741312000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

FORMULA

From G. C. Greubel, Jun 12 2019: (Start)

G.f.: Hypergeometric3F1(1/3, 2/3, 1; 3/2; 27*x/2).

E.g.f.: sqrt(2/(3*x)) * sin( arcsin(sqrt(27*x/2))/3 ).

E.g.f.: hypergeometric2F1(1/3, 2/3; 3/2; 27*x/2) (End)

MATHEMATICA

Table[2^n (3n)!/(2n+1)!, {n, 0, 20}] (* Harvey P. Dale, Mar 19 2016 *)

PROG

(PARI) a(n) = 2^n * (3*n)! / (2*n+1)! \\ Michel Marcus, Jun 24 2013

(MAGMA) [2^n*Factorial(3*n)/Factorial(2*n+1): n in [0..20]]; // G. C. Greubel, Jun 12 2019

(Sage) [2^n*factorial(3*n)/factorial(2*n+1) for n in (0..20)] # G. C. Greubel, Jun 12 2019

(GAP) List([0..20], n-> 2^n*Factorial(3*n)/Factorial(2*n+1) ) # G. C. Greubel, Jun 12 2019

CROSSREFS

Sequence in context: A156525 A170904 A090732 * A280794 A090316 A128578

Adjacent sequences:  A014295 A014296 A014297 * A014299 A014300 A014301

KEYWORD

nonn,easy

AUTHOR

Igor Pak

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 14:15 EST 2019. Contains 329806 sequences. (Running on oeis4.)