Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:44:39
%S 1,2,24,576,21120,1048320,65802240,5000970240,446557224960,
%T 45830873088000,5316381278208000,687893507997696000,
%U 98231192942070988800,15345895252950201139200,2603510504983275503616000,476694375041453927694336000,93692112621783944697741312000
%N a(n) = 2^n * (3n)! / (2n+1)!.
%H G. C. Greubel, <a href="/A014298/b014298.txt">Table of n, a(n) for n = 0..250</a>
%F From _G. C. Greubel_, Jun 12 2019: (Start)
%F G.f.: Hypergeometric3F1(1/3, 2/3, 1; 3/2; 27*x/2).
%F E.g.f.: sqrt(2/(3*x)) * sin( arcsin(sqrt(27*x/2))/3 ).
%F E.g.f.: hypergeometric2F1(1/3, 2/3; 3/2; 27*x/2) (End)
%t Table[2^n (3n)!/(2n+1)!,{n,0,20}] (* _Harvey P. Dale_, Mar 19 2016 *)
%o (PARI) a(n) = 2^n * (3*n)! / (2*n+1)! \\ _Michel Marcus_, Jun 24 2013
%o (Magma) [2^n*Factorial(3*n)/Factorial(2*n+1): n in [0..20]]; // _G. C. Greubel_, Jun 12 2019
%o (Sage) [2^n*factorial(3*n)/factorial(2*n+1) for n in (0..20)] # _G. C. Greubel_, Jun 12 2019
%o (GAP) List([0..20], n-> 2^n*Factorial(3*n)/Factorial(2*n+1) ) # _G. C. Greubel_, Jun 12 2019
%K nonn,easy
%O 0,2
%A _Igor Pak_