login
A377427
E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^2))^2.
2
1, 2, 24, 574, 20950, 1034588, 64592556, 4881978904, 433485612000, 44236604978112, 5102049359506176, 656355318561027072, 93184708368255490896, 14472905373087118415040, 2441090221004851173202080, 444344375119629711627403776, 86822659466273927313499224192
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377426.
a(n) = (2/(4*n+2)!) * Sum_{k=0..n} (4*n+k+1)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 2*sum(k=0, n, (4*n+k+1)!*abs(stirling(n, k, 1)))/(4*n+2)!;
CROSSREFS
Cf. A376392.
Sequence in context: A377425 A170904 A090732 * A014298 A280794 A090316
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2024
STATUS
approved