login
A377428
Expansion of e.g.f. (1/x) * Series_Reversion( x*(2 - exp(x))^4 ).
2
1, 4, 56, 1432, 54184, 2734104, 173032680, 13192623448, 1177932112040, 120610734752920, 13935516914366824, 1793837540679492312, 254604546529825454376, 39504947952102355425304, 6652925600854130108675048, 1208610940763303680263653464, 235601431979292206398224418216
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(2 - exp(x*A(x)))^4.
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377424.
a(n) = (4/(4*n+4)!) * Sum_{k=0..n} (4*n+k+3)! * Stirling2(n,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(2-exp(x))^4)/x))
(PARI) a(n) = 4*sum(k=0, n, (4*n+k+3)!*stirling(n, k, 2))/(4*n+4)!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2024
STATUS
approved